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Abstract

A multivariate ensemble Kalman filter (MVENKF) implemented on a massvely parallel
computer architedure has been developed for the Poseidon ocean circulation model and tested
with a Pacific Basin model configuration. There ae aout two million prognostic state-vedor
variables. Parallelism for the data assimilation step is achieved by regionalizaion of the
badkground-error covariances that are cdculated from the phase-space distribution of the
ensemble. Eacd processing element (PE) colleds elements of a matrix measurement functional
from neaby PEs. To avoid the introduction of spurious long-range @variances asociated with
finite ensemble sizes, the badground-error covariances are given compad support by means of a

Hadamard (element by element) product with a three-dimensional canonical correlation function.

The methodology and the MVENKF implementation are discussed. To verify the proper
functioning of the algorithms, results from an initial experiment with in situ temperature data ae
presented. Furthermore, it is $own that the regionalizaion of the background covariances has a

negligible impact on the quality of the analyses.

The parallel algorithm is very efficient for large numbers of observations. On a platform with
distributed memory, individual-PE memory, rather than speed, dictates how large an ensemble

can be used in pradice



1 Introduction

a. Background and motivation

Many of the ealy advances in ocean data assimilation have emerged from pradica applicaions
in the tropical Pacific. These gplications have been driven by the nedl to initialize the ocean
state for coupled atmosphere-ocean forecasts of the El Nifio-Southern Oscillation (ENSO)
phenomenon. In addition, hindcast estimates of the ocean state have been useful in diagnosing
the evolution of El Nifio. Over much of the world's oceans, large-scale assmilation is facilitated
by the availability of satellite altimetry because of the sparsity of in situ data. However, in the
tropical Pacific, the ocean observing system was vastly improved by the deployment of the
Tropical Atmosphere-Ocean (TAO) array of moored buoys (e.g., McPhaden et al. 1998) to
support seasonal-to-interannual (Sl) climate studies and prediction. One of the major successes
of the Tropical Ocean Global Atmosphere (TOGA) program was the emergence of coupled
physicd models (as opposed to statistical models) with some prediction skill (e.g., Chen et al.

1995 Ji et al. 1996.

Recently, the NASA Seasonal-to-Interannual Prediction Project (NSIPP) has been established to
further the utilization of satellite observations for prediction of short term climate phenomena.
NSIPP undertakes routine forecats in a reseach framework with global coupled ocear-
atmosphere-land surfacemodels. The initial implementation has used an ocear analysis system
employing a simple asmilation methodology—a univariate optimal interpolation (UOI, e.g.,
Trocooli et al. 200)—with the Poseidon isopycnal ocean general circulation model (OGCM,
Schopf and Loughe 1995 Konchady et al. 1998 Yang et al. 1999. Like several other ocean

data assimilation systems currently in use & other institutions (e.g., J and Leedma 1997, it is



based on the asumption that the forecast-error covariances are goproximately Gaussan and that
the cvariances between the temperature-field errors and the salinity-field and current-field

errors are negligible.

Largely due to the high-resolution coverage and acairracy of the TAO measurements, the UOI is
effedive in improving surface and sub-surface temperature field estimates in the eguatorial
region in comparison with the estimates obtained without temperature asimilation. As a result,
its introduction into the NSIPP coupled forecasting system has resulted in significant

improvements in the aupled model’s hindcast skill of Nifio-3 temperature anomalies.

The UOI has the alvantage of being inexpensive in terms of computing resources. Nevertheless
it suffers from three major shortcomings. The first shortcoming is that it can only be used to
assimilate measurements of a model prognostic variable. The UOI’'s ssoond shortcoming is that
it does not use awy statisticd information about the expeded inhomogeneous distribution of
model errors. The third shortcoming is that it is based on a stealy state error-covariance model
which gives the same weight to a unit innovation regardless of how acarate the ocearstate
estimate has become & a result of previous analyses. Direaly linked to this shortcoming is the

failure to provide time-dependent estimates of the model errors.

In response to the first two shortcomings, a parallel multivariate Ol (MvOI) system has been
implemented. The MvOI uses gealy state estimates of the model-error satistics computed from
ensemble runs of the OGCM in the presence of stochastic amospheric forcing from Monte Carlo

simulations (Borovikov and Rienecker 200]). Yet, the MvOI cannot adjust to dynamicaly



evolving error datistics. A paralel multivariate ensemble Kalman filter (MVENKF) has been
developed to address this shortcoming. This paper discusses its design, implementation and

initial testing.

b. Overview of the ensemble Kalman filter

Although the Kalman filter (Kalman 1960 and its generalization to nonlinea systems, the
extended Kalman filter, are statistically optimal sequential estimation procedures that minimize
error variance (Daley 1991; Ghil and Malanotte-Rizzoli 1991, Bennett 1992 Robinson et al.
1998, they cannot be used in the mntext of a high-resolution ocea or amospheric model
because of the prohibitive ast of time stepping the model-error covariance matrix when the
model has more than a few thousand state variables. Therefore, reduced-rank (e.g., Cane et al.
1996 Verlaan and Heemink 1997 and asymptotic (e.g., Fukumori and Malanotte-Rizzoli 1995
Kaman filters have been proposed. Evensen (1994 introduced the ensemble Kalman filter
(EnKF) as a Monte Carlo-based alternative to the traditional Kalman filter. In the EnKF, an
ensemble of model trajedories is integrated and the statistics of the ensemble ae used to
estimate the model errors. Closely related to the EnKF are the singular evolutive extended
Kaman filter (Pham et al. 1998 and the eror-subspace statistical estimation algorithms

described in Lermusiaux and Robinson (1999.

Evensen (1994 compared the EnKF to the extended Kalman filter in twin asgmilation
experiments involving a two-layer quasigeostrophic (QG) ocean model on a square 17 x 17
grid. Evensen and van Leauwen (1996 used the EnKF to processGEOSAT altimeter datainto a

two-layer, regional QG model of the Agulhas current on a 51 x 65 grid. Houtekamer and



Mitchell (1998 and Mitchell and Houtekamer (2000 used the EnKF in identicd-twin
experiments involving a threelevel, spedral QG model at triangular truncaion T21 and

parameterized model errors.

Keppenne (200Q hereafter KOO) conducted twin experiments with a parallel MvEnNKF algorithm
implemented for a two-layer, spedral, T100 pimitive equation model with parameterized model
errors.  With about 2 x 10° model variables, the state-vedor size was small enough in this
applicétion to justify a parallelization scheme in which each ensemble member resides in the
memory of a separate CRAY T3E processor (heredter processing element: PE). To paralelize
the analysis, KOO s algorithm transposes the ensemble acoss PEs at analysis time, so that eat
PE ends up pocessing data from a sub-region of the model domain. The influence of each
observation is weighted acording to the distance between that observation and the center of each

PE region.

To filter out noise asociated with small ensemble sizes, Houtekamer and Mitchell (2007)
developed a parallel EnKF analysis algorithm that applies a Hadamard (element by element)
product (e.g., Horn and Johnson 1991) of a crrelation function having local compad support
with the badground-error covariances. They tested this analysis s£heme on a 128 x 64
Gaussian grid corresponding to athreelevel QG model using randomly generated ensembles of
first-guessfields computed ahead of time. The benefits of constraining the covariances between
ensemble members using a Hadamard product with a locally supported correlation function hes
also been investigated by Hamill and Snyder (2000 in the antext of an intermediate QG

atmospheric model.



In this paper, we build upon the @ntributions made by each of the above-mentioned studies to
implement a parallel MVENnKF for the Poseidon OGCM. Initial tests are undertaken with a 20-
layer, Pacific basin configuration of the model with about two million state variables. The
system noise is acounted for in a manner similar to that used in KOO, by including a stochastic
component in the forcing fields. Following Houtekamer and Mitchell (2001, an element-by-
element product with an idealized three dimensional compadly supported correlation function is

used to remove spurious long-range signals from the badkground-error covariances.

c. Organization of thefollowing Sections

The remainder of this paper is concerned with the parallel MVENKF design for the Poseidon
OGCM. The model is briefly discussed in Sedion 2 and the algorithms are presented in Sedion
3. The scalability of the algorithms and the effed of distributing the analysis calculations
between PEs are discussd in Section 4, where an initial test of the MVENKF is conducted in the

context of TAO-temperature data assimilation. Section 5 contains a summary.

A complete description of the algorithms and of the multivariate data assimilation system is
available under the form of a NASA tedhnical report (Keppenne and Rienedker 2001a, hereafter
KRO1a). The gplicaion of the MVENKF to the asimilation of altimeter data into Poseidon is
discussed in Keppenne and Rienedker (2001b, hereafter KRO1b). Its application to the
assimilation of TAO temperature data including the impact of the asimilation on the model

currents, salinity and sea surface height (SSH) are the focus of another article in which the



MVENKF is also compared to the UOI currently used to initialize the NSIPP SI forecasts

(Keppenne and Rienedker 2001c, hereafter KRO1c).

2 The Poseidon parallel ocean model

a. Model summary

The Poseidon model (Schopf and Loughe, 1995 is a finite-difference reduced-gravity ocean
model which uses a generalized vertical coordinate designed to represent a turbulent, well-mixed
surfacelayer and nealy isopycnal deeper layers. Poseidon has been documented and validated
in hindcast studies of El Nifio (Schopf and Loughe 1995 and has since been updated to include
prognogtic salinity (e.g., Yang et al. 1999. More receitly, the model has been used in a
numerical study of the surfacehea balance along the equator (Borovikov et al. 2001) and in an

examination of ENSO and its mechanisms during the 199Gs (Y uan et al. 2001).

Explicit detail of the model, its vertical coordinate representation and its discretizaion are
provided in Schopf and Loughe (1995. The prognostic variables are layer thickness
h(A, 6, ¢, 1), temperature, T(A, 6, ¢, t), salinity, YA, 6, {, t), and the zonal and meridional current
components, u(A, 6, ¢, t) and v(A, 6, {, t), where A is longitude, Olatitude, t time and { is a
generalized vertical coordinate which is O at the surfaceand increments by 1 between successive

layer interfaces.



Following Pacarowski and Philander (1981), vertical mixing is parameterized through a
Richardson number-dependent mixing scheme implemented implicitly. An explicit mixed layer

isincluded with a mixed layer entrainment parameterization following Niiler and Kraus (1977).

A time-splitting integration scheme is used whereby the hydrodynamics are done with a short
time step (15 minutes), but the vertical diffusion, convedive aljustment and filtering are done

with coarser time resolution (half-daily).

b. Model setup
The version of Poseidon used here has been parallelized as in Konchady et al. (1998) using the
same message-passing protocol and 2D horizontal domain decomposition used by Schaffer and

Suarez (19989 for the NSIPP-1 atmospheric general circulation model.

The eperiments of Sedion 4 use a20-layer Pacific basin version of the parallel model with
uniform 1° zonal resolution. The meridional resolution varies between 1/3° a the equator and 1°
in the extratropics. A solid boundary is imposed at 45° south. There, a no-dip condition is used

for the aurrents and a no-flux condition is used for mass hea and salinity.

There ae 173x 164 x 20 grid boxes, of which 28% are situated over land, resulting in a total of
2.0422x 1 individual prognostic variables. A 16 x 16 PE lattice is used as shown in Figure 1.
The PEs locaed over land are virtual PEs which do not take part in the ensemble integrations

and analyses.
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Figure 1. Horizontal domain decomposition for the Pacific model. The thin lines delinede grid
cells. The thick lines correspond to the boundaries of each PE box’s PE-private aeaon the

16 x 16 PE lattice Eadh dark circle correspondsto a TAO mooring.



Figure 2 illustrates the horizontal setup for one PE box. Locally within the box, the grid cells are
numbered 1<i <1, zonally and 1< j <J, meridionally, from the box’s lower-left, southwest
corner. In order to minimize the communication overhea in the horizontal differencing of the
model equations, the PE boxes overlap. The overlapping regions, called halo regions, have
width i; — 1 to the West, | —i, to the Eadt, j; — 1 to the South and J —j, to the North. The PE-

private regions are thus defined by i, <i<i,and j, <j<|,.

1,J 1J

injz iz,f7

infi izf1

1,1 L1

Figure 2. Schematic setup for one PE. The halo regions are mlored gray. The thin lines
delineae grid cells. The thick lines delimit the halo regions and PE boundaries. In this example,

I=J=9,i1=j1=3andi2:j2:7.
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3 Asdmilation methodology

a. Horizontal domain decomposition

Since the version of Poseidon used here is parallelized, the same domain decomposition used to
run the model can be used in the analyses, provided the badground error-covariance matrix,
P", is locally approximated. This simplificaion avoids costly ensemble transpositions aaoss
PEs. Thus, the ensemble is distributed so that the memory of each PE contains the same
elements of each ensemble member’s gate vedor. These elements correspond to every variable
contained within the PE boxes, the PE-private portions of which are visible in Figure 1. This

decomposition is used for the ensemble integrations as well as for the analyses.

b. Assmilation on geopotential surfaces

The temperature measurements from each TAO mooring are recorded at specific depths which
are fairly consistent between moorings. Since Poseidon uses an isopycnal vertical coordinate,
the model fields must be interpolated to the latitude, longitude and depth of ead observation.
When the UOI was implemented, the dhoice was made to trea the temperature observations in
the usual (A, 6,2 coordinate system in light of the &sence of corresponding salinity
observations. To maintain compatibility with the UOI which interpolates model fields vertically
to a series of pre-specified depths (hereafter levels) prior to ead analysis, the same gproad is
used here and the badkground covariances are clculated on levels rather than on layers.
Therefore, the T, S, u and v fields are onverted from isopycnals to levels and the analysis
increments are clculated on the levels before being mapped bad to the isopycnals. Sixteen

levels are used in Seadion 4 and in KRO1b-c.

11



The @ove scheme resultsinonly T, S u and v being updited. The layer thicknesses, h, are left
unchanged by the assimilation. The procedure dlows the model to dynamicaly reclculate h
from the new density distribution and the target interface buoyancies, as it does a every time

step (see Schopf and Loughe 1995.

o=t
—
= |I-o.5, D)
= P ((F1H057T0) <!
=141

Figure 3. Mapping of the model temperature field to a specified level, z= z. Within the arrent
grid cell, z is contained between the layer interfaces (=1 and {=I1+1. In the model
discretization, only the layer-average temperature matters. Y et, to avoid ambiguities when more
than one specified level pass through the same layer in the grid cell, the field is interpolated

linealy as shown.

Since only the layer-average value of T, S u and v in each vertical grid box (i, j, 1) within grid

cell (i, j) appea inthe model equations, the mapping from isopycnals to levels could be made by

assigning to a given field at (A;, 8;, z).the value of the same field at (A;;, 8;,1). However, if the

12



mapping were performed in this manner, ambiguities would arise when several levels pass
through the same layer at (A, 6;). A possible cmnsequence is the singularity of the analysis
equations of Sedion 3ein the (A, 6, 2) coordinate system. To avoid this problem, the mapping is
made & though the vertical variations of the field were piecewise linea, with the discontinuities
in the slope occurring in the middle of the layers. This is illustrated in Figure 3 for the

temperature field.

c. Ensemble size

With the MVENKF, PE memory imposes constraints on both the domain decomposition and the
ensemble size The Pacific basin version of Poseidon is typicdly run on 64 PEs. The goal is for
the MVENKF runs to be done on a few times as many PEs. In this gudy, 256 PEs are used and
the memory available on these PEs imposes a limit of about 40 ensemble members on the
platform currently used for the production forecats (1024PE CRAY T3E-600 with 128VIB
local RAM per PE). Encouraging results have been obtained with comparably sized ensembles
by Mitchell and Houtekamer (2000 with a threelevel QG model and by KOO with a two-layer
shallow water model. The issue of whether the MVENKF perform as well as or better than the
UOI with even as few as 40 ensemble members is touched upon in Sedion 4a and examined in

depth in KRO1c.

d Decomposition of analysis between PEs
The small ensemble size introduces the need to filter out spurious long-range crrelations when
the badground covariances are wmputed. Following Houtekamer and Mitchell (2000 and a

suggestion by Gaspari and Cohn (1999, this filtering is achieved through a Hadamard product
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(i.e. A+ B suchthat {Ae B}, = A;B,) of the eror-covariance matrices with a local compadly
supported correlation function. This function is the product of a horizontal correlation function,
Cn(r*?), 1™ =[(A2- Ay + (8- B)%14°°, and a verticad correlation function, C,(r*?),
r'? = |z - z|/l, where (A, 8, z) are the wordinates of point i. In this gudy, C, =C, =C,,
where C, is defined by (4.10) of Gaspari and Cohn (1999. The normalization is such that
C,(r)=0, r=2. The orrelation scaes used in Sedion 4 and in KRO1c for the assimilation of

TAO temperature data are I, = 3(°, 1o = 15° and |, = 500m. Shorter correlation scaes give better

results when gridded altimeter data ae assimilated (KRO1b).

(1)}

1S]

4
Vi
y

Figure 4. Domain decomposition for the analysis. The outer rectangle delimits the aeg A,
from which the data asimilated on one PE are colleded. The innermost rectangle depicts the
boundary of the PE-private aeg B. The dlipse delimits the influence region of the PE-private
areds utheastern corner cell, (i2, j1). The shaded area ontains the ellipses for al grid cells,

(i, j), contained in B. Theregion € contains all the PE’s grid cell s including the halo regions.
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Although the TAO temperature data assimilated in Sedion 4 are sufficiently few (about 600 at
each analysis) for ead PE to processthem all, an approach whereby each PE processes data
from a sub-region of the model domain is used. When more numerous data ae assimilated, such

as in KRO1b, the regionalization beames a necessty.

Besides the obvious efficiency gain in a paralel environment, another justification for
decmposing the analysis is that the cmpactly supported badkground covariances result in the
data that diredly (i.e., through the measurement operator) influence the state variables within
each grid cell being contained within an ellipse with semi axes 2|, and 2. Taking advantage of
this fad, the region from which the observations assimilated on eat PE are colleded is chosen
to be the smallest rectangle, with sides Aij1 - Aiyjz + 4l) and B2 - B1j1 + 4lg, containing al the

ellipses that correspond to the PE-private grid cells of this PE. Thisisillustrated in Figure 4.

e. Analysis procedure
Without the Hadamard product of the badkground-error covariances with the cmpactly

supported correlation function, the EnKF analysis can be written as

y=E(x' -(x"), (@)
L=L(y+(x))-L(x"), @
Y:{yl’...’ yrr}’ |_:{|l’...’|rr}’

LU Wlp=d-L(y+(x")+e, @)
x'=x'+vYl'h.  (d)
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In (1) and throughout this discusgon, uppercase boldfacesymbols represent matrices, lowercase
boldfacesymbols represent vedors and lowercase regular (i.e., not bold) symbols denote scalar

variables. The vector, d (ngx 1) contains ng observations, X, (Nyx 1), 1 <i<m, is the ith
ensemble state vedor of length n, and m stands for the ensemble size The superscripts @ and
refer to the analyzed state and the forecast, respedively, = is a smoothing operator (Sedion 3h)
and < > denotes an ensemble average. Thevedors y, (ny x 1) and |, (ng x 1) are columns of the
matrices Y (nkxm) and L (ng x m) respedively, and L(X)is a measurement operator which
relates the state vedor to the observations. Matrix W (ng x ng) is the observation-error
covariance matrix. It includes measurement errors as well as representation errors. The
representer matrix, R = L L', maps the badground-error covariance matrix, P " (n, x ny), to the

error subspaceof the measurements. The elements of b are the representer-function amplitudes

used to updkte X;.

The ng x 1 vedor, z =d-L(y, +(x>f)+e in (1c), contains the innovations with resped to the ith
ensemble member. Prior to their calculation, = is applied to smooth x;. Following Burgers et
al. (199), e isarandom perturbation chosen such that (g)=0 and <qu> =W . ltsroleisto

maintain the influence of observation uncertainty in the eror covariances estimated diredly from
the ensemble so that these cvariances are consistent with the theoretical estimates. Itsinclusion

helps prevent the ensemble from coll apsing resulting in a systematic eror underestimation.
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When L(x)isalinear operator and = is an identity mapping, (1) simplifies to the usual Kalman

filter analysis equations (e.g., Gelb, 1974 applied to updite ead ensemble member in turn.

When the Hadamard products with the compadly supported correlation function are introduced

and when the subscript ranges are explicitly written down, (1c) and (1d) are replaced by

Ca=Gp =G CE™),  1<psn, 1<qsn, ()
CoLm+wWlh =d-Ly+(x )+, 1sism (@)

Mo =G CGE?),  1sksn,, 1<psn, (&)

=1"The O 2d
y‘: Lfb o 0 1<ism 1<k<n,, (&)
Xk =%k T Yeorio (29

where o and e refer respectively to the inner product of two vectors and to the Hadamard product

of two matrices, and C (ng X ng) isa compadly supported correlation matrix whose elements are
defined by (2a), where the indices p and q refer to the data w, and wy. The components of the

ng X 1 vedor #, defined by (2c) contain idealized correlations between the (A, 6, z) coordinates,

of grid box k and the wordinates of each measurement. To simplify the notation, only one

subscript is used to identify the grid box. The index,1<k <n,,, thus loops over the three
dimensions of the (A, 6, 2) coordinate system. The mx 1 vector, Y, ={ VY., Y} CONtains

smoothed deviations from the ensemble mean of the m ensemble state vedorsin the kth grid box.

It isthus asingle row of matrix Y. With the MVEnKF, vy, actualy has four components, i.e.,

17



Yik = E({T’S’U’V}ik _{<T>’<S>’<u>’<v>}k)'

The mx 1 vedor, y, , contains the weights with which the elements of vy, in the kth grid box,
{T.s,u,v}, , are combined to updste the ith ensemble member. In eac grid box, the analysis

upcete, (2c-€), involves m matrix-vector multiplication of L by b+, (2d). If the analysis

calculations were not distributed as explained in Sedion 3g, or if the observations allowed to
influencethe variables of each grid box were not limited to a sub-region of the entire domain as a
result of imposing compadly supported badkground covariances, these multiplicaions would be
very costly. For the Poseidon model distributed aaoss 256 PES, they correspond to a tolerable
fraction of the total cost of the MVENKF. For example, when TAO temperature data are
assimilated every five days as in Sedion 4, the ensemble integration takes about 1100 seconds
per analysis cycle while the analysis takes about 380 seands. Of these, about 270 seconds are

spent in the matrix-vedor products of (2d).

f. System-noise representation
The theory of the Kalman filter (e.g., Gelb, 1974 asuumes that the first- and seaond-order
statistics of the arors in the model and external forcing are known. Higher-order statistics are

negleaded. Let the evolution of the true state be represented by

g—TIF(X,t)+§(x,t), 3

18



where £ combines the model errors and forcing errors, and is commonly known as system noise
or process noise. The vector F (nxx 1) contains the right hand sides of the model partial
differential equations which includes the model hydrodynamics, physics and forcing. It is

asumed that the model and forcing are unbiased, i.e. (f(x,t)) =0, and that the ¢ vedors are

uncorrelated in time:

<(§(Xk’tk) f(x|’t|)>zr(xkax|)5(tk -t), (4)

where the system-noise variance matrix, I, is assumed known. Of course, the unbiased
asumption is rarely corred in pradice Thisis espedally true with ocear models in which the
thermocline layer is usually too diffuse. In an effort to account for the model bias, an algorithm,
derived from Dee ad Da Silva (1998, to estimate and correct systematic model errors has

recantly been implemented into the MVENKF code. However, it isnot used in this sudy.

In meteorological and oceanographic data assimilation, the statistics of ¢ are generally unknown
and are the objed of parameterization. Adaptive Kalman filters that smultaneously estimate the
state and system-noise statistics have been developed. Blanchet and Frankignoul (1997
summarize and compare several adaptive filtering algorithms. In pradice, the prohibitive ast of

the alaptive filters has limited their applicaion in meteorology and oceanoraphy.

Motivated by the aurrent ladk of information about the model-error statistics, the system-noise is

represented solely by modeling the erors in the surface wind stressand hea flux forcing. A
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system-noise representation in which not only the forcing errors but also the model errors are

parameterized is in development.

Because of the focus on Sl variability, the forcing errors (uncertainties) are modeled on those
time scales, with each ensemble member being forced by a monthly mean perturbation of the
monthly mean basic state. The basic state is the superposition of the climatological seasonal
cycle with interannual anomalies. The climatology is provided by Special Sensor Microwave
Imager (Atlas et al. 1999 winds and Earth Radiation Budget Experiment hea flux data. The
interannual anomalies are obtained by integrating the amospheric model over observed SST data
(Reynolds and Smith 1994. The perturbations applied are due entirely to internal atmospheric
chaos and are generated by starting the @amospheric integrations at different times. By using the
same SST, ead member of the amospheric ensemble used to force the ocean ensemble has the
same S| phase. The spreal of the atmospheric ensemble is meant to be representative of the

uncertainty of the forcing products used to forcethe model in non-ensemble runs.

g. Parallel algorithm
1) Preliminaries
This ®dion discusses what steps are involved in the parallel MvVENKF analyses from the point of

view of one PE, hereafter referred to asthe aurrent PE. This overview starts after the airrent PE

has obtained the observations, d?, made within its PE-private region (8 in Fig. 4). The position

of each PE onthe latticeis gored inthe npe X mpg array PE, where npe and meg are the number

of PEs along the zonal and meridional diredions, respedively. In Sedion 4 and in KRO1b-c, npe

=mpe =16. The total number of PEsisNpe. Every PE hasa aopy of PE.
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All information exchanges between PEs use message-passing functions from the Goddard Earth
Modeling System (GEMS, Schaffer and Suarez 1998 library. The GEMS functions provide a
high-level, objea oriented interface to the CRAY native SHMEM (shared memory)

communicétion library.

The analyses rely principally on two GEMS functions which are mentioned here in template
form in order to simplify the discusson. The first function, pe_col | ect (...), is used to
collea datafrom either the entire PE array or from the row or column of PE which contains the
current PE. The second function, hal o( ...) , updates its array argument in the halo regions of
each PE (gray areas in Fig. 2), after eat PE has modified its PE-private elements of this array

corresponding to the inner redangle in Figure 2.

2) Algorithm
* Step 1: Vertical interpolation of the T, S u and v fields from the model layers to the analysis

levels as explained in Sedion 3b.
* Step 2: Calculation of the anomalies with respect to the exsemble mean over the aetire

domain of the arrent PE (area € in Fig. 4), x¢' —<x‘°>f 1<i<m

» Step 3: Cdculation of y°, the aurrent PE's portion of y. in (1a) . Prior to ead zonal

application of the smoothing operator, =, acall to pe_coll ect( ) isused to collect,

from the PEs listed in column jc of PE, the state elements required to run a reaursive filter
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(Sedion 3h). The same holds for eat meridional application of the filter, where row ic of

PE is now involved.

Step 4: ldentification of the PE-private data required by the other PEs.  First,
pe_col | ect ( ) isused to colled the longitudes and latitudes of each PE’s uthwestern,

southeastern, northwestern and northeastern corner grid cells. Using this information, the
current PE cdculates for ead (i, j) pair which elements of its d® fall inside the redangle,

A;;, which is the region from which PE;; will need to collect data (Fig. 4). The indices of the

relevant elements of d? are stored in an array, K; -

Step 5: Evaluation of the measurement operator. The airrent PE cdculates a n? x mmatrix,
L®, where nfis the number of observations contained in its PE-private region. The dement

a the intersedtion of the pth row and ith column of L?is

L8, =LP (y, +(x)") = LP((x)"),

where LPis an interpolation operator which maps its argument to the locaion of df)’, the pth

PE-private observation on the arrent PE (KR01a).

Step 6: Calculation of Z°, the innovations with resped to the exsemble mean for the arrent

PE’s private region. The innovation corresponding to d;')’ IS
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Step 7: Gathering of L?, a n{ xm matrix analogous to L%, but corresponding to the ng
measurements made within area 4 (Fig. 4), using the information recorded in the k;; arrays.

The function pe_col | ect ( ) iscaled Npe times. Each call results in a different PE

completing the wlledion of itsversion of L°.

Step 8: Colledion of the innovations, z?, required by each PE. As for gathering L?,

pe collect( ) is caled Npg times. Eadc PE passs to pe collect( ) the

elements of its z? innovation vedor required by the other PEs.

Step 9: Calculation of the representer amplitudes by solving a local equation system

corresponding to the restriction to area 4 of the global equations (2). A local representer
matrix, R =L? (L")T, and its Hadamard product with a local compadly supported correlation
matrix, £°+R?, are computed. Then, local versions of the m right hand sides of (2b) are
calculated asz? - L, +e,1<i<m. Finaly, the local equivalent of (2b) is ®lved m times,
yieldingthe b vedorsfor the aurrent PE. Since the dfective rank of R? is mrather than nJ

and as a precaition against R losing its positive definiteness due to round off errors, LU
decomposition with partial pivoting is used rather than Cholesky decomposition. If LU

decomposition fails, singular value decomposition (SVD) is used and nea-zero singular

values of R? +W? areignored (KR01a).

Step 10: Computation of the portions of the analysis increments corresponding to ead PE-

private grid box. A local version of (2c-e) isused. Then, callsto hal o( ) are used to fill

the elements of x* — x"in the arrent PE’s halo regions. It is more eonomical to obtain
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these elements in this manner than through the gplication of (2c-e) to ead grid box situated

within the halo regions.

* Step 11: Transformation of the T, S u and v increments from the analysis levels to averages
on the model layers. This dep is the reciprocal of step 1 Following this, the analysis

increments are inserted gradually into ead ensemble member’s gate vedor (Sedion 3h).

h. Miscellaneous features
1) Incremental analysis updating

Incremental analysis updating (IAU, e.g., Bloom et al. 1995 is used to insert the analysis

increments, x* —x ", into the model in agradual manner. Namely, the model partial differential

equations are replacel with

SN C OREN(D)
ot (ti+1_ti)

’ ti <t <ti+1’ (5)

where x?(t,)and x ' (t,) arethe analysis and forecat at the time, t;, of the ith analysis.

The IAU is used here for two reasons. First, it lessens the unwanted effects of intermittent data
assimilation, specifically initialization shocks resulting from imbalances between the model
fields when the analysis increments are inserted dredly. Seoond, it alows the model to
gradually adjust the h field in response to the T, § u and v increments without violating the

constraints imposed by the cntinuity equation.
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2) Measurement operator

In Sedion 4, the measurement functional, L? (x), is simply a 2D interpolation operator which
maps the model temperature field—previously interpolated verticaly to a set of levels which
include the depths of the TAO measurements—to the latitude and longitude of each observation

on the gpropriate depth level.

Each PE performs the interpolation to the locations of the observations, d?, contained within its
PE-private aea Due to the presence of the halo regions, the horizontal interpolation can be
made without exchanging information between neighboring PEs. Explicit detail of the

interpolation procedure is given in KRO1a

3) Superobservations

As is common when several measurements are made & the same location between successve
analyses, the observations are smoothed temporally. This operation, sometimes referred to as
superobing and introduced by Lorenc (1981), combines the measurements using weights which
deaease exponentially with the time interval between the time of a measurement and that of an
analysis in which the measurement is processed. For more detail, the reader is referred to

KROla

4) Pre-filtering
The purpose of the smoothing operator, = in (1a), is to remove spurious short-range covariances
from the representer matrix, R. These spurious elements result from the limited ensemble size

used to estimate the eror distribution and from associated sampling errors.  Spurious long-range
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covariances are filtered out by imposing that the covariance functions be compadly supported

(Sedion 30d).

The = operator relies on successive gplicaions of a simple one-dimensional reaursive (infinite
impulse response) filter which is applied horizontally in each layer to damp small-scale
variability prior to cdculating L and after subtradion of the ensemble mean from each ensemble
member’s gate vedor, as indicated in (1a). The filter equations and response function are

discussed in KRO1a.

4 Verification

a. Initial test

To test the MVENKF, TAO temperature data are assimilated every five days into Poseidon for
January 1993 to March 1993 wsing a 40-member ensemble distributed on 256 PEs. For
reference, arun without assimilation and one in which the data ae assimilated using the UOI are
initialized with the initial ocean state corresponding to the MVENKF central forecast (ensemble
member closest to the mean in terms of root mean square distance in the phase spacespanned by

the model state variables) at the beginning of the experiment.

After the threemonth assimilation period, the cettral forecat from the MVENKF run is used to

initialize al2-month hindcast run of Poseidon forced with climatological winds, SSTs and hed-
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fluxes, and without temperature assimilation. Two similar runs are initialized with the states of

the UOI and control runs at the end of the assimilation period.

The purpose of the experiment is merely to verify that the various MVEnKF components are
working properly. The asimilation of TAO temperature data into Poseidon and its impad on the

model currents, salinity and SSH are the focus of KRO1c.

Figure 5 shows the evolution of the spatial-mean temperature anomaly at the TAO-mooring
locaions, in the observations as well as in the MVENKF, UOI and control runs. The aomalies
shown are with resped to the mean seasonal cycle alculated at eat mooring and at eat
measurement depth for the 199G. For the MVENKF run, the anomalies are those of the central

forecast.

Initially, the UOI and MVENKF runs have the same positive bias as the cntrol run, since the
same initial ocean state is used in the threeruns. After an initial adjustment, the mean anomalies
from the MVENKF and UOI runs are very close to the @rresponding observed anomalies during
the period with temperature assimilation. Inthisresped, both methods are effective in correcting
the forecast-model bias of the antrol run. The latter is between 0.5 and 1°C too warm during

the initial threemonths as well as during the following year.
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Figure 5. Evolution of spatial-mean temperature anomaly at the TAO-mooring locaions during
the threemonth period with TAO-temperature data assimilation and during the one-yea hindcast
period without temperature asimilation. The mean anomalies shown correspond to the TAO
observations (dotted—stars), the MVEnKF run (solid—diamonds), the UQI run (solid—<circles)

and the free-model control run (soli d—squares).
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When the temperature assimilation ceases, the UOI and MVENKF runs gart drifting badk towards
the warm conditions of the control run. However, even after a yea with climatological forcing
and no data assimilation, the positive bias of the MVENKF run (diamonds) is about one third that
of the control run (squares). At that point, the level of bias e in the UOI run (circles) is about

two thirds that seen in the control.

It appeas from this experiment that (1) the asimilation of the TAO temperature data using
either method has a positive impact on the forecast-model bias for temperature and that (2) the
better results obtained here with the MVENKF result in part from the underlying multivariate
corredion in which not only T, but also S u and v, are updated. Definitive anclusions regarding

these two points are drawn in KRO1c.

b. Effect of parallel decomposition on analysis

The parallel algorithm relies on the assumption that (1) the analysis calculations can be
partitioned resulting in each procesor assimilating local data and that (2) the partitioning does
not have adeleterious effect on the analysis results. The impad of performing a different local

inversion on each processor rather than inverting the global system matrix, S=CeLL" +W in (2b),

is examined in this Sedion.

The local and global solutions are cmpared through a single temperature analysis using all the
TAO mooring data corresponding to January 1, 1997 In this case, sufficiently few data ae
involved (642 measurements) that (2b) can be solved on each PE without partitioning S.

Although the number of observations does not necessitate distributing the analysis computations,
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the example illustrates how the inversion would be distributed if there were too many data for
each PE to processthem all at one time, as is the cae for the TOPEX altimeter data assimilated

in KRO1b.

Rather than 40 ensemble members and 256 PES, as in Sedion 4a and in KRO1b-c, 25 members

and 100PEs are used here, asthe @rresponding resources suffice for the purpose of this Sedion.

Figure 6 shows how imposing compact support to R impads the sparsenessof the global S. It
also illustrates how the sparsenessis exploited by distributing the analysis calculations in the
parallel algorithm. Figures 7 and 8 illustrate the respedive impacts on the asimilation
increments of using compadly supported badkground covariances and distributing the analysis

among PEs. Asiscommon, adiagonal W is assumed.

Figure 6a shows the global S, when the @ndition that it be compactly supported is not imposed
(LL"+W in 1c). Figure 7a shows an equatorial sedion through the crresponding temperature

increment. The arresponding seasurfacetemperature (SST) increment is shown in Figure 8a.

When the badkground covariances are mwmpadly supported, the global S (CsLL +W in 2b),

becmes garse & Figure 6b illustrates. The most obvious effed of the Hadamard product of C
and R on the assimilation increment is that the latter is tapered away from the Equator where no
measurements are available (Fig. 8b). The dfed of the Hadamard product on the vertical
structure of the temperature increment is not as dramatic (Fig. 7b) since the data come from

several depths between the surfaceand 500 meters. The issue of why applying the Hadamard
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product, thus lving (2b), is a better idea than solving (1c) is addressed by Houtemaker and
Mitchell (2001 in the cntext of a threelevel QG model. They show that the EnKF performs
best for small ensembles when the Hadamard product is applied and that the optimal correlation

scales are inversely proportional to the ensemble size.

When the analysis is distributed, the alculation of alocal S on ead PE amounts to sub-sampling
the global compadaly supported S of Figure 6b. On each PE, the sub-sampling resultsinalocal S
which is less garse than the global S because it does not contain covariances between remote
locaions which are identically zero as a result of the Hadamard product. Figures 6¢-e show

local S matrices on threerandomly chosen PEs.

Comparing Figure 7c and Figure 7b or Figure 8c and Figure 8b shows that the analysis
increments obtained when the analysis calculations are distributed are virtually identical to those
obtained with (2), even though the global inversion (2b) is bypassed. Indeed, the root mean
square difference between the Equatorial temperature increments of Figures 7b and 7c is
6.0x10™C. That between the SST increments of Figures 8b and & is 1.0x10°C. Thus, the
tremendous computational savings associated with substituting the local S for the global S occur

with a negligible impact on the quality of the analysis.
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Figure 6. Structure of error-covariance matrices in observation spacefor one TAO temperature

analysis corresponding to January 1, 1997. (a) Global system matrix, S, without compad

support. (b) Global compadly supported S. (c-€) Example PE-local S matrices corresponding to

PE 8 for which n, = 247, PE 28 (n, = 356) and PE 86 (n, =160).
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Figure 7. Equatorial sedions through the temperature-field pert of the analysis increments (°C)
obtained after inversion of the matrices shown in Fig.6. (a) Global inversion without compadly
supported covariances. (b) Global inversion with compad support. () Distributed inversion with

compad support.
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c. Scding

This Sedion discusses the two main current limitations of the parallel MVEnKF: (1) that it scales
poorly beyond 100 PEs in the present madine (CRAY T3E-600 with 128VB RAM per
PE)/model configuration and (2) that the maximum ensemble size dtainable is dictated by the
memory of the individual PEs on a massively parallel processor (MPP with distributed memory.
Since the expeded lifetime of a modern supercomputer is about two yeas, it is unlikely that
these limitations will impose the same restrictions by the time the MVENKF is used with the
global OGCM to initialize the NSIPP production forecasts. Therefore, the software engineaing
approach used to implement the MVENKF has focused on portability, modularity and objed-

oriented design, rather than on optimally using the resources of the aurrent platform.

Figure 9a shows how t _, the time spent per ensemble member in a five-day analysis cycle
involving the asimilation of TAO temperature data, scdes with N, (diamonds). The dashed
curve labeled “EnKF perfed” extrapolates the value of t,, for 16 PEsin the range from 16 to 256

PEs, assuming linea scaling. According to Amdhal’s law, such scaling can never be ahieved.
Instead, the time used by an algorithm on p PEsis given by t, =t,(f +(1-f)/ p), where t; is

the time used by the same algorithm on a serial machine and f is the fradion of the operations

that must be performed sequentially.

The observed scaling is not easily compared with theory. First, because t, is unknown. Second,
because f depends on N,.. Stll, t,, deaeases by a mere 16% when N, doubles from 128 to

256. Rather, t, deaeases by 45% between 16 PEs and 32PEs. This s indicative of saturation.
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The horizontal resolution of the Pacific basin version of Poseidon used in these experiments is
not high enough for the distribution of its gate vedor over more than 100 PES to be optimal. In
contradt, the global version of Poseidon to which the MVENnKF will be gplied next has enough
state variables to warrant its distribution over more than 100 PEs.. For reference, the observed
and perfect scaling curves are also shown for the UOI. In this case, the saturation becomes
apparent with 64 PEs at the aurrent model resolution. For ead value of N, The UOI timing
number is higher than the arresponding MVENKF number because the latter corresponds to the

total time divided by the ensemble size (m,,, below).

In figure 9b, the largest ensemble size allowed by the individual-PE memory on the CRAY T3E-

600, m.,, isshown as afunction of N,.. For ead value of N, the timing number in Figure
9a mrresponds to m,,, ensemble members, so that memory is sturated. Between 16 PEs and

128 PEs, m, ., increases approximately linearly from6to 36 On 256 PEs, m,, is46.

To increase m,, for given N, one could simultaneously run several small ensembles on

smaller PE partitions rather than a single ensemble on a large partition. However, this would
require a communicaion mechanism not currently supported by the GEMS library.
Alternatively, running the MVENKF on a platform with globally addressable memory would also
allow larger ensemble sizes. The 40-member ensembles used in KRO1b-c and in Sedion 4a
adhieve agood compromise between accuracy and keegoing the st of the data assimilation

within acceptable limits.
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Figure 9. (@) Time per ensemble member required to complete one five-day analysis cycle when

TAO temperature data are asimilated (t,, in text). The airves labeled “perfed” correspond to

an unattainable linear scaling. (b) Largest ensemble size possible as a function of Ny (M, in

text) onthe CRAY T3E-600.
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5 Summary

This article describes the MVENKF design and its parallel implementation for the Poseidon
OGCM. A domain decomposition whereby the memory of each PE contains the portion of every
ensemble member’s gate vedor that corresponds to the PE’s position on a 2D horizontal lattice
isused. The assimilation is parallelized through a localization of the forecast error-covariance
matrix. When data become available to assimilate, ead PE colleds from neighboring PES the
innovations and measurement-functional elements acwrding to the localization strategy. The
covariance functions are given compad support by means of a Hadamard product of the
badground-error covariance matrix with an idedized locally supported correlation function. In
EnKF implementations involving low-resolution models, one has the freedom to work with
ensemble sizes on the order of hundreds or thousands. Rather, with the state-vedor size of
approximately two million variables considered here, memory, communicaions between PEs
and operation count limit the ensemble size In most instances, 40 ensemble members

distributed over 256 CRAY T3E PEs are used.

Besides the details of the observing system implementation, the impad of the bad<ground-
covariance localizaion on the analysis increments is discussed, as well as performance issues.
To confirm that the data asimilation system is working properly, the discussion also includes
results from an initial test run in which the MVENKF is used to assimilate TAO temperature data

into Poseidon.
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Some issles that must be addressed to improve the MVENKF are the deficiency of the system-
noise model which only acounts for forcing errors, the problem of ensemble initialization which
can be aldressed using a perturbation-breeding approadh, and the memory limitations inherent
with running the MVEnNKF on a MPP with distributed memory. On a machine with globally
addressable memory, the memory-imposed constraints will be less &vere. Fortunately, the
modular, objed oriented approad used to implement the MVENKF does not tie it to the CRAY

T3E architedure.
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